
Elimination Techniques on Linearized Computational Graphs and Dual Graphs
with an Emphasis on Data Locality

Andrew Lyons
Department of Electrical Engineering and Computer Science

Vanderbilt University
2201 West End Avenue, Nashville, TN 37235, USA

andrew.m.lyons@vanderbilt.edu

Abstract

Use of the chain rule in the preaccumulation of Jacobian
matrices yields a computationally complex search space of
elimination sequences. Current techniques attempt to min-
imize arithmetic operations in the generated code, which is
generally considered to be an NP-hard problem, though no
proof currently exists.

The heuristics described in this paper focus on generat-
ing code that makes use of cache and other fast memory to
speed execution. We describe heuristics that focus on data
locality for vertex and edge elimination on linearized com-
putational graphs, as well as heuristics for face elimination
on dual graphs.

1. Introduction

The heuristic model presented here has been imple-
mented as part of a piece of software called xaifBooster,
which is written in C++ and uses the boost graph li-
brary. xaifBooster receives xml code that describes directed
acyclic graphs known as linearized computational graphs
(LCGs). These graphs represent the code (FORTRAN or
C++) that describes some vector functionF whose Jaco-
bian matrixF ′ we seek.

The component described in this paper creates a copyG

of the linearized computational graph and performs a series
of l eliminations on it that reduce it to a bipartite graphG(l)

which represents the Jacobian ofF . Each of these elimi-
nations generates a corresponding Jacobian Accumulation
Expression graph (JAE graph) which is eventually turned
into a line of Jacobian accumulation code. The sequence
of eliminations performed onG, the LCG ofF , determines
(uniquely) a block of Jacobian accumulation code, which is
computationally substantial.

Current popular heuristics for Jacobian accumulation

[1, 2] focus solely on minimizing floating point operations,
the result is that they greedily choose elimination targets
from around the graph and the accumulation code they pro-
duce will not take advantage of the benefits of caching. The
heuristics described here are designed to produce code that
will reuse bits of data immediately, while they still residein
fast memory.

2. Determination of Elimination Sequences

For a LCGG, a set of elimination targetsΘG = {θ|θ is
a valid elimination target inG} is constructed. A heuristic,

denotedhk, is a map from one such setΘ
(k−1)
G to a subset

Θ
(k)
G . Elements in the target setΘ

(k)
G constitute the most

favorable equivalence class forhk, based on its particular
criteria. Thus if all of the elements inΘ(k−1)

G are in the same

equivalence class with respect tohk, thenΘ
(k)
G = Θ

(k−1)
G .

In the event of a heuristichk returning target setΘ(k)
G

such that|Θ(k)
G | > 1, Θ(k)

G must be passed to another heuris-
tic hk+1, and so on until the target set consists of a single
element. The elimination of this single element transforms
G(h) intoG(h+1). In this way, what is defined as a hierarchy
of heuristics(h1, h2, ..., hq) will make a distinct sequence
of l eliminations, thereby turningG into the bipartite graph
G(l).

Thus, for any particular graphG the unique elimination
target chosen by a hierarchy ofq heuristics is determined by
the following formula:

Θ
(q)
G = hq(hq−1(...h1(Θ

(h−1)
G)...)).

In order to ensure that|Θ(q)
G | = 1, we require that the last

heuristic in the hierarchy always return a unique selection
(Placing such a heuristic anywhere but last in the hierarchy
would render all subsequent heuristics useless). Forward
or reverse mode heuristics will always return a unique se-
lection, as they are implemented based on one particular

topological sort of the original graphG. see [3] for more
information on forward and reverse heuristics.

3. Vertex Elimination Heuristics

Vertex elimination is executed on linearized computa-
tional graphsG = (V, E). Three sets of vertices partition
V : the set of independent verticesVI , the set of dependent
verticesVD, and the set of “eliminatable” (or intermediate)
verticesVE . For vertex elimination on a LCGG, the set of
eliminatable targets is defined by

ΘG = {θ|θ ∈ VE}.

Definition 1 ∀vi ∈ V the predecessor setof vi, denoted
Pvi

, is {vj |vj ∈ V, (j, i) ∈ E}.

Definition 2 ∀vi ∈ V thesuccessor setof vi, denotedSvi
,

is {vj|vj ∈ V, (i, j) ∈ E}.

Elimination of a vertexθ is executed by creating(p, s) ∈ E,
∀vp ∈ Pθ, vS ∈ Sθ. If (p, s) already exists, we conduct
what is known as a fused multiply-add (FMA), and incre-
ment the existing edge with the value of the newly created
one. θ and its incident edges are then removed from the
graph. Thereby, a complete sequence of vertex eliminations
reducesG to a bipartite graph withV = VI ∪VD and edges
(i, d) ∈ E (wherevi ∈ VI andvd ∈ VD) whose labels rep-
resent the Jacobian entries. For more information on vertex
elimination, see [1].

In addition to the set of eliminatable targetsΘ, vertex
elimination heuristics are made aware ofPθ− andSθ− , the
sets of predecessors and successors ofθ−, the most recently
eliminated target.

3.1. Highest Sibling

Highest vertex sibling degree, or HSv, selects targets
that have the highestsibling degree, denotedsdmax, with
respect to the previous elimination,θ−. ∀θ ∈ ΘG, the sib-
ling degree ofθ, denotedsdθ−(θ), is

sdθ−(θ) = |Sθ ∩ Sθ− | ∗ |Pθ ∩ Pθ− | .

The maximum sibling degree is defined as follows:

sdmax(ΘG) = max
∀θ∈ΘG

{sdθ−(θ)} .

HSv selects Θ
(k)
G = {θ|θ ∈ Θ

(k−1)
G , sdθ−(θ) =

sdmax(θ−)}. In the case whensdmax = 0, Θ
(k)
G = Θ

(k−1)
G .

The elimination of a targetθ+ directly following the
elimination of a targetθ with sdθ(θ

+) > 0 creates code
that stipulatessdθ(θ

+) additions to edges created during
the previous eliminationθ−, which should still reside in fast
memory.

3.2. Successor/Predecessor

Successor/Predecessor, orSPv, makes selections based
on the following criteria:

If |Pθ− ∩ Θ
(k−1)
G | > 0 ∧ |Sθ− ∩ Θ

(k−1)
G | > 0,

If |Pθ− | > |Sθ− |,

SPv selectsΘ(k)
G = {θ|θ ∈ Θ

(k−1)
G , θ ∈ Sθ−}.

If |Sθ− | > |Pθ− |,

SPv selectsΘ(k)
G = {θ|θ ∈ Θ

(k−1)
G , θ ∈ Pθ−}.

If |Sθ− | = |Pθ− |,

SPv selectsΘ(k)
G = {θ|θ ∈ Θ

(k−1)
G , θ ∈ Pθ− ∪ Sθ−}.

If |Pθ− ∩ Θ| > 0 ∧ |Sθ− ∩ Θ| = 0,

SPv selectsΘ(k)
G = {θ|θ ∈ Θ

(k−1)
G , θ ∈ Pθ−}.

If |Pθ− ∩ Θ| = 0 ∧ |Sθ− ∩ Θ| > 0,

SPv selectsΘ(k)
G = {θ|θ ∈ Θ

(k−1)
G , θ ∈ Sθ−}.

When an element fromSθ−(Pθ−) is selected,|Pθ− | (|Sθ− |)
of its edges should still be in fast memory because they were
created (or incremented) during the previous elimination.

3.3. Example

In the interest of simplifying this example, we will as-
sume that only vertices without outedges are considered de-
pendent vertices. In practice, this may not always be the
case, for reasons beyond the scope of this paper.

As an example, considerG as depicted in Fig. 1 (a) and
the following sequence of vertex elimination heuristics:h1

= Sibling,h2 = Successor/Predecessor,h3 = Markowitz,h4

= Reverse.
For the first application of this sequence to our graphG,

h1 andh2 will return the same setΘG that they receive,
because there is no previous eliminationθ− associated with
the first elimination.

h3 will thus receive the setΘ′′
G = {v3, v4, v5, v6} and

will return the setΘ′′′
G = {v3} becausev3 has the lowest

Markowitz degree (1 inedge * 1 outedge = 1).
Because a single elimination target has now been chosen,

we can make our first elimination by creating new edges
(or correspondingly incrementing existing edges) from ev-
ery predecessor ofv3 to every successor ofv3. The resulting
graphG′ is shown in Fig. 1 (a).

Next, we constructΘG′ = {v4, v5, v6}, setθ− to v3,
and pass them both toh1, which is HSv. Observe that
sdv3

(v4) = |Sv4
∩ Sv3

| ∗ |Pv4
∩ Pv3

| = |1| ∗ |1| = 1,
whereassdv3

(v5) = sdv3
(v6) = |0| ∗ |0| = 0. In this way,

HSv chooses a single elimination targetv4, and the result
of eliminating vertexv4 is G′′, shown in Fig. 1 (c).

As before,ΘG′′ = {v5, v6} and θ− = v4. HSv is
unable to choose betweenv5 andv6 becausesdv4

(v5) =
sdv4

(v6) = 0. Θ′
G′′ = {v5, v6} is then sent toh2, which is

v1 v2

v3 v4

v5

v6

v7 v8

v1 v2

v4

v5

v6

v7 v8

v1 v2

v5

v6

v7 v8

v1 v2

v6

v7 v8

v1 v2

v7 v8

(a) (b) (c) (d) (e)

Figure 1. Vertex elimination example

Successor/Predecessor.h2 determines that|Pv4
∩ Θ′

G′′ | =
1 > 0 and |Sv4

∩ Θ′
G′′ | = 0, so it selectsΘ′′

G′′ = {v5}.
Fig. 1 (d) shows our LCG after the removal ofv5.

|ΘG′′′ | = 1, because the only remaining intermediate
vertex isv6, so we can go ahead and eliminatev6 to obtain
the bipartite graphG(4), shown in Fig. 1 (e)

4. Edge Elimination Heuristics

An edge(vi, vj) or short (i, j) can be eitherfront or
backeliminated, denoted by(i, j)f or (i, j)b respectively.
Front elimination is executed by connecting all vertices in
the predecessor setP(i,j)f

= {vi}, with all vertices in
the successor setS(i,j)f

= Svj
. These new edges are

{(i, k)|vk ∈ Svj
}. Only edges whose target is not an output

can be front eliminated. Back elimination is executed by
connecting all vertices in the predecessor setP(j,k)b

= Pvj

with all vertices in the successor setS(j,k)b
= {vk}. The

new edges are{(i, k)|vi ∈ Pvj
}. Only edges whose source

is not an input variable can be back eliminated.
In both case the new edges are labeled with the values

cki := cji ∗ ckj and the edge(i, j) is removed. If an edge
elimination (i, j)f or (j, k)b would create an edge(i, k),
where(i, k) already exists, the label of(i, k) is incremented
cki := cki + cji ∗ ckj . This is referred to asabsorptionas
opposed to the creation of new edges which representfill-in .

If at any point during the elimination process an inter-
mediate vertex has no more in- or out-edges, the vertex and
all incident edges are removed from the graph. Thereby, a
complete sequence of edge eliminations reducesG to a bi-
partite graph consisting only of vertices∈ X ∪Y and edges
whose labels represent the Jacobian entries.

Each multiplication or combined incre-

ment/multiplication on the edge labels implies a Jacobian
accumulation expression (JAE) which is stored in a list.

4.1. Highest Sibling

Highest edge sibling degree, or HSe, will choose elim-
ination targets that have the maximumsibling degreede-
noted bysdmax. ∀θ ∈ ΘG, the sibling degree ofθ with
respect to the previous eliminationθ−, denotedsdθ−(θ), is
defined by

sdθ−(θ) = |Sθ ∩ Sθ− | ∗ |Pθ ∩ Pθ− | .

The maximum sibling degree is defined as follows:

sdmax(θ−) = max
∀θ∈ΘG

{sdθ−(θ)} .

HSe selects Θ
(k)
G = {θ|θ ∈ Θ

(k−1)
G , sdθ−(θ) =

sdmax(θ−)}. In the case whensdmax = 0, Θ(k)
G = Θ

(k−1)
G .

The elimination of a targetθ+ directly following the elim-
ination of a targetθ with sdθ(θ

+) > 0 creates code that
stipulates the immediate absorption of an edge created dur-
ing the previous eliminationθ−, which should still reside in
fast memory.

Note that if the last elimination was a front (back) elimi-
nation, any edge being considered for back (front) elimina-
tion must have a sibling degree of 1. Thus,HSe can choose
front (back) eliminations following a back (front) elimina-
tion only when the maximum sibling degree is 1.

4.2. Example

Consider the following sequence of edge elimination
heuristics as applied to the LCGG depicted in Fig. 2 (a):
h1 = Sibling,h2 = Markowitz,h3 = Reverse

v1 v2

v3

v4
v5

v6 v7

(1,3) (2,3)

(1,4)

(3,4) (3,5)

(2,5)

(5,7)

(4,7)

(4,6)

v1 v2

v3

v4
v5

v6 v7

(1,3) (2,3)

(1,4)

(3,4)

(2,5)

(5,7)

(4,7)

(4,6)

(3,7)

v1 v2

v3

v4
v5

v6 v7

(1,3) (2,3)

(1,4)

(3,4)

(2,5)

(5,7)(4,6) (1,7)

(3,7)

v1 v2

v3 v4v6 v7

(1,4)

(2,4)

(1,7)

(2,7)
(1,6)

(2,6)

(1,3)
(2,3)

(a) (b) (c) (d)

Figure 2. Edge elimination example

Again, all elements inΘG are in the same equivalence
class with respect to all data locality heuristics, thush2

(Lowest Markowitz) must be used to choose our first elim-
ination. The Markowitz degree for any front or back edge
elimination is defined as|S| or |P |, respectively; see [1]
for an in-depth description of Markowitz-type heuristics for
edge elimination on a LCG. LM chooses both(3, t)f and
(2, t)f because they are in the same equivalence class, with
Markowitz degree 1.

Reverse mode chooses to eliminate(3, t)f becausev3

occurs afterv2 in every topological sort ofG. The resulting
graphG′ is shown in Fig. 2 (b). Now that we have made an
elimination and we have some data in fast memory, we can
make use of data locality in order to expedite our accumu-
lation.

Inspection of Fig. 2 (b) reveals that both(3, 4)f and
(4, 7)b are siblings (of sibling degree 1) of(3, t)f . How-
ever, we cannot eliminate edge(3, 4)f because vertex 4 is a
dependent vertex. For reasons dealing with implementation
that won’t be discussed here, any vertex with more than 1
out-edge must be considered dependent. Hence, every ver-
tex in our graph except forv5 will be treated as an output.
This process continues until we have madel eliminations,
and are left with the bipartite graph shown in Fig. 2 (b).

5. Face Elimination Heuristics - Elimination
Techniques on the Dual Graph

Face elimination [2] is executed oñG = (Ṽ , Ẽ), the dual
graph (or line graph) of some LCGG. Edges(i, j) ∈ Ẽ, are
referred to as “faces” to distinguish edges inG andG̃.

Definition 3 A face(i, j) ∈ Ẽ is said to besimilar to a
vertexv ∈ Ṽ (denotedθ v) if Pv = Pi andSv = SJ .

A face (i, j) is eliminated by creating a new vertexv, and
creating inedges from allp ∈ Pi and outedges to alls ∈ Sj .

If ∃u ∈ Ṽ s.t.(i, j) u, It’s value is incremented by the value
of v.

Definition 4 A face (vi, vj) is said to beintermediateif
|Pvi

| > 0 ∧ |Svj
| > 0.

Definition 5 A vertexv ∈ Ṽ is said to befinal if there is no
path inG̃ from any vertexp ∈ Pv to any vertexs ∈ Sv that
does not go throughv.

Current implementations of face elimination in dual
graphs require checking for cases in which vertices that
have identical predecessor and successor sets, as they must
be merged into a single vertex.

In our particular implementation, the setΘG̃ is com-
posed of faces that are both intermediate and incident with
at least one final vertex. It is our belief that only eliminating
such final edges will prevent the condition of two different
vertices sharing the same predecessor and successor sets,
thus alleviating the need for merges. That an optimal elim-
ination sequence resides in the resulting metagraph hinges
on proof of what is known as the ‘no free refill conjecture’.

5.1. Absorption

Absorb mode, orABf , choosesΘ(k)
G in the following

way:

Θ
(k)
G = {θ|θ ∈ Θ

(k−1)
G , ∃v ∈ Ṽ s.t.θ v}.

As always, in the case that|Θ(k)
G | = 0, we setΘ(k)

G =

Θ
(k−1)
G . In this way, we ensure that so long as there is such

a face inG̃, our elimination will result in what is referred to
as an “absorption”.ABf generates cache-friendly code by
repeatedly choosing faces whose elimination does not cre-
ate a new vertex iñG. The intended consequence is that

G̃ will contain many paths as induced subgraphs, and elim-
inations straight along these paths are quite efficient with
respect to data locality.

References

[1] A. Albrecht, P. Gottschling, and U. Naumann. Markowitz-
type heuristics for computing Jacobian matrices efficiently.
In ICCS 2003, volume 2658 ofLNCS, pages 575–584, Berlin,
2003. Springer.

[2] U. Naumann. Optimal accumulation of Jacobian matrices
by elimination methods on the dual computational graph.
Math. Prog., 3(99):399–421, 2004. Published online at
www.springerlink.com.

[3] U. Naumann, J. Utke, A. Lyons, and M. Fagan. Control flow
reversal for adjoint code generation. InProceedings of the
Fourth IEEE International Workshop on Source Code Analy-
sis and Manipulation (SCAM 2004), pages 55–64, Los Alami-
tos, CA, USA, 2004. IEEE Computer Society.

